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Summary

A boundary-value problem governing a three-phase concentric-cylinder model was analytically
modeled to analyze annular interfacial crack problems with Love’s strain functions in order to find the
stress intensity factors (SIFs) and strain energy release rates (SERRs) at the tips of an interface crack in a
nonhomogeneous medium. The complex form of a singular integral equation (SIE) of the second kind
was formulated using Bessel’s functions in the Fourier domain, and the SIF and total SERR were
calculated using Jacoby polynomials. For the validity of the SIF equations to be established, the SIE of
the three-concentric-cylinder model was reduced to the SIE for a two-concentric-cylinder model, and the
results were compared with the previous results of Erdogan. A preliminary set of parametric studies was
carried out to show the effect of interphase properties on the SERR. The method presented here provides
insight about the effect of interphase properties on the crack driving force.

Introduction

Advanced composite materials are now being used widely for aerospace applications, and the
development of reliable analysis methods for these composite structures has contributed to the growing
use of composite materials. Methods for analyzing the deformation of a composite structure under load
are well established. However, methods for analyzing strength and the degradation of strength during
service are less developed. The initial strength of an undamaged composite can be analyzed using
lamination theory and macroscopic failure criteria applied at the ply level. The effect of constituent
properties can be included in the analysis using micromechanics. However, it is difficult to account for
the initial presence of microscopic flaws and the growth of microscopic damage during service. For
polymer matrix composites, the initial presence and growth of flaws in the region of the fiber-matrix
interface have a large effect on strength retention. Development of reliable models for the growth of
damage in this interfacial region would contribute to better understanding of the long-term durability of
composite structures. Anisotropic and/or nonhomogeneous theories can describe the average macroscopic
effect of microscopic damage such as fiber breaking, matrix cracking, and interface debonding. However,
a fracture mechanics approach applied at the microscopic level is needed to account for the initiation and
growth of microscopic damage. After microscopic damage has grown into a macroscopic defectlike
interply delamination, failure can be analyzed from a macromechanics level (ref. 1).

On atomic and molecular scales, damage is treated differently in metals, ceramics, and polymers
because of the inherent differences in the basic microstructures (ref. 2). In fracture mechanics, the driving
force for the initiation and growth of damage is the strain energy release rate (SERR). The mathematical
methods used to calculate the SERR for damage growth in a composite are the same for different types of



NASA/TM—2004-212328 2

materials. However, the magnitude of the SERR and the critical SERR for the growth of damage depend
on material properties and molecular damage processes.

In the present work, the fracture mechanics problem of a crack in the interfacial region of a composite
is studied. Although the model could be used for analyzing metal and ceramic matrix composites, in this
report the model is applied to polymer matrix composites. In a simplified view, a polymer matrix
composite is composed of two materials (fiber and matrix) with different but uniform properties separated
by a planar interface. In reality, there is often a region of finite thickness near the interface with properties
different from the fiber or the matrix. This region is sometimes introduced intentionally. For example, a
sizing is often applied to fibers to improve weaving characteristics and to improve adhesion between the
fiber and matrix in the cured composite. Although the sizing material is chemically compatible with the
matrix material, the mechanical properties of the sizing and matrix are not necessarily equal. Another
reason for the presence of a third region between the fiber and matrix is the effect of the interface on the
formation of the matrix material during composite fabrication. For thermoplastic matrix materials, the
degree of crystallinity near the fiber can be different from that in the bulk region. For thermosetting
matrix materials, the presence of the fiber surface affects the cure reactions so that the chemical structure
of the matrix material is different near the fiber. The region of finite thickness between the fiber and
matrix is called the interphase. The thickness and properties of the interphase depend on the particular
combination of fiber, sizing, and matrix used as well as the composite processing conditions. Other
researchers have attempted to model variations in material composition and properties in the interphase
region of a composite material (refs. 3 and 4). This report does not investigate a specific material system.
Instead, the fracture mechanics model developed in this report is used for a parametric analysis of the
effect of interphase thickness and stiffness on the stress intensity factor (SIF) and SERR.

A fracture mechanics analysis of an interface crack in a three-component system (fiber, matrix, and
interphase) is performed within the confines of the linear theory of elasticity. The crack problem is of the
mixed boundary value type and is reduced to a system of singular integral equations (SIEs). Except under
very special circumstances where a closed-form solution can be found (ref. 5), systems of SIEs are solved
by a numerical method to obtain the crack-tip SIF and SERR. The SIF and SERR are the forces driving
damage growth and are related to the effects of applied loads, crack geometry, and material properties.
The goals of this work are to obtain solutions for crack-tip SIF and SERR and to use these solutions to
evaluate the effects of material properties and interphase thickness on damage propagation.

A brief description of the formulation of the problem follows. The first step is to develop some basic
forms capable of modeling a cylindrical fiber. The cylindrical coordinates r, q, and x are used. The
variable x is used instead of the more common z in order to be consistent with reference 5. Results from
this report reduce to those in reference 5 under special circumstances. In the boundary value problem
considered, there is a coating between a straight elastic fiber of finite radius and an infinite elastic matrix
material of different thermomechanical properties. The coating could be the interphase in a polymer
matrix composite or, more generally, any coating in any composite material. The bonding between the
fiber and the coating is assumed to be perfect. The bonding between the coating and matrix is perfect, but
there are axially symmetric cracks on the coating-matrix interface. The applied external loads cause
traction on the surfaces of the cracks. The goals are to obtain a solution for crack-tip singularities, to find
the stress distribution in the medium, and to find the energy release rates for the propagation of the crack
along the interface.

A special case with only two cracks extending to infinity along the axial direction is shown in
figure 1. An infinitely long straight fiber and matrix material extending to infinity both axially and
radially are joined by a third material called the coating. The bonding between the fiber and the coating is
perfect. The bonding between the coating and the matrix is perfect in the centered region of contact. In
figure 1, r is the radial direction, x is the axial direction, and (m1, n1), (m2, n2), and (m3, n3) are the elastic
constants of the matrix, fiber, and coating, respectively. There is a geometric symmetry in the medium
with respect to the x = 0 plane. The fiber radius rf is finite, the radius of the coating rc is finite, and the
radius of the matrix rm is infinitely large.

To solve the elasticity problem for the geometry shown in figure 1, first the Green’s function for each
layer is obtained. Using stress and displacement equations and boundary conditions on the interface of the
coating and matrix, the integral equations of the problem are derived. These integral equations are
reduced to a system of SIEs.
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Figure 1.—Three-concentric-cylinder model with interface annular cracks. L, length of the bonded interface;
        ,     , length of the debonded interfaces; E1, E2, E3, modulus of elasticity for the matrix, fiber, and 
    coating; rm, radius of the matrix; rf, radius of the fiber; rc, radius of the coating; �1, �2, �3, Poisson ratios
    for the matrix, fiber, and coating; µ1, µ2, µ3, elastic constants of the matrix, fiber, and coating.

Uniform far-field stresses applied along the radial direction

L1’ L2’

Analytical Solution

Governing Equations

This investigation deals with the plane strain problem (or the generalized plane stress in which the
mean state of stress across the thickness is considered, or the quasi-plane state of stress in which the q

variable is ignored) for bonded materials. The problem considered here is axisymmetric. There is an
existing geometric symmetry about the x = 0 plane. The external loads are separated into symmetric and
antisymmetric components with respect to the x = 0 plane, and the only nonzero stress and displacement
components in an infinitely long cylindrical domain are given by equations (1) to (6) (refs. 5 to 7). In
these equations, t is a dummy variable of the Fourier domain, F is the Love strain function, n is the
Poisson’s ratio, and r is the radial distance.
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Because of existing boundary conditions and the plane strain assumption with no torsional stresses, it
is convenient to use the Love strain function F to develop the solution following a procedure similar to
that in reference 5. The Love strain function F can also be called the Green’s function. In the absence of
body forces, F is defined by the following biharmonic equation in cylindrical coordinates:

— — =2 2 0 7F r t( , ) ( )

where the Laplacian operator in cylindrical coordinates is

— = + -2
2

2
21

8
d

dr r

d

dr
t ( )

The solution of equation (7) is as follows, where r = rt

F r t AK B K CI D I, ( )( ) = ( ) + ( ) + ( ) + ( )0 1 0 1 9r r r r r r

The Green’s functions F(r, t) for each layer are

F r t A K B K C I D I r tc1 1 0 1 1 1 0 1 1 10, ( )( ) = ( ) + ( ) + ( ) + ( ) < < •r r r r r r r

F r t A K B K C I D I r tf2 2 0 2 1 2 0 2 1 0 11, ( )( ) = ( ) + ( ) + ( ) + ( ) < <r r r r r r r

F r t A K B K C I D I r t r tf c3 3 0 3 1 3 0 3 1 12, ( )( ) = ( ) + ( ) + ( ) + ( ) < <r r r r r r r

where A1, B1, C1, D1, A2, B2, C2, D2, A3, B3, C3, and D3 are the unknown constants that are functions of the
transform variable t.

So that the solution will be bonded for the first and second layer (matrix and fiber) and because of the
behavior of the Bessel functions at r = • and r = 0, some of the constants become zero. For the matrix,
C1 = 0 and D1 = 0. For the fiber, A2 = 0 and B2 = 0. Therefore, the solutions for the unknown Green’s
functions of each layer become
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F r t A t K B t K1 1 0 1 1 13, ( )( ) = ( ) ( ) + ( ) ( )r r r

F r t C t I D t I2 2 0 2 1 14( , ) ( )= ( ) ( ) + ( ) ( )r r

F r t A t K B t K C t I D t I3 3 0 3 1 3 0 3 1 15( , ) ( )= ( ) ( ) + ( ) ( ) + ( ) ( ) + ( ) ( )r r r r

The functions F1, F2, and F3, and their derivatives, are substituted into the stress and displacement
equations (1) to (6), where r = rt, rc £ r1 £ •, 0 £ r2 £ rf, rf £ r3 £ rc, rf is the radius of the fiber, and rc is
the radius of the coating.

The continuity of the radial stresses (eqs. (1) to (3)), the shear stress equation (eq. (4)), the radial
displacement equation (eq. (5)), and the axial displacement equation (eq. (6)) at the matrix-coating
interface and the fiber-coating interface must be applied to find the unknown constants A3, B3, C3, D3, A1,
B1, A2, and B2. Using r3 = r1 = rc at the matrix-coating interface and defining a = rct transforms equations
(1), (4), (5), and (6) into equations (16) to (23):
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Using r3 = r2 = rf at the fiber-coating interface and defining g = rf t transforms equations (1), (4), (5),
and (6) into equations (24) to (31):
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Boundary Conditions

Thermomechanical stresses in the medium without the crack are assumed to be known since they can
be easily calculated. Hence, by simple superposition, the original problem (fig. 2) can be reduced to one
in which external loads are first applied to a system with the coating-matrix completely separated (fig. 3)
and perturbation loads are then applied to close the crack in the bonded region (fig. 4).

The stress-related boundary conditions at the matrix-coating (region 1 to region 3) interface, where
r1 = r3 = rc are

s s d x d xr c r cr x r x p x p x1 3 32, ( , ) ( )( ) = = -( ) ± +( )

and

t t d x d xrx c rx cr x r x q x q x1 3 33, , ( )( ) = ( ) = -( ) ± +( )
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Figure 2.—Original problem.
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Figure 3.—Elasticity problem—far-field stress applied with no bonding at the
   coating-matrix interface and a gap equal to the calculated displacements 
   gl along the radial axis and g2 along the axial axis in figure 2.

r

x
Fiber (region 2) 

Coating (region 3)

 

 

 

Displacement
Perturbation  

Figure 4.—Mixed boundary value problem—the unbonded problem of figure 3 
    with a displacement perturbation to close the crack in the bonded region.
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where p and q are the unknown stresses outside the crack. The p and q stresses are zero along the crack
surface. The displacement-related boundaries at the matrix-coating (region1 to region 3) interface are

u r x u r x g x g xr c r c1 3 1 1 34, , ( )( ) - ( ) = -( ) ± +( )d x d x

and

u r x u r x g x g xx c x c1 3 2 2 35, , ( )( ) - ( ) = -( ) ± +( )d x d x

where g1 and g2 are known radial and axial distances between the inner diameter of the matrix cylinder
and the outer diameter of the coating cylinder while these cylinders are completely separated.

Both stress and displacement boundary conditions are applied at the fiber-coating (region 2 to
region 3) interface because there is no debonding. The boundary conditions at the fiber-coating interface,
where r2 = r3 = rf, are given in equations (36) to (39):

s sr f r fr x r x2 3 36, ( , ) ( )( ) =

t trx f rx fr x r x2 3 37, , ( )( ) = ( )

u r x u r xr f r f2 3 38, , ( )( ) = ( )

u r x u r xx f x f2 3 39, , ( )( ) = ( )

Green’s Function

There are eight unknown constants and eight equations at the matrix-coating (region 1 to region 3)
and fiber-coating (region 2 to region 3) interfaces. Substituting equations (16) and (18) into equations (32)
and (33) establishes the following two equations with two unknowns:
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= ( ) -( )
•

Ú
( ) ( )

( ) ( ) ( )
cos( ) ( )

and

2 2

2
413 1 1 1 1

1 0 1 1 1
0p

a a

a a n a
d xt

A K B K

B K B K
x dt q x x

- +

- -

È

Î
Í

˘

˚
˙ = ( ) -( )

•

Ú
( ) ( )

( ) ( )
sin( ) ( )

Making an inverse Fourier cosine transformation to equation (40) results in equation (42):

t
A K

A
K

B K B K
p x x xt dx3 1 0

1
1

1 1 0 1 1

0
1 2

42
- -

+ - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ( ) -( ) ( )
•

Ú
( ) ( )

( ) ( ) ( )
cos ( )

a
a

a

n a a a

d x
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Using the properties of the Dirac delta function changes equation (42) into equation (43):

t A K
A

K B K B K p t3
1 0

1
1 1 1 0 1 11 2 43- - + - -

È

Î
Í

˘
˚̇

= ( ) ( )( ) ( ) ( ) ( ) ( ) cos ( )a
a

a n a a a x x

Applying an inverse Fourier sine transformation to equation (41) implies equation (44):

t A K B K B K B K q x x xt dx3
1 1 1 1 1 0 1 1 1

0
2 2 44- + - -[ ] = ( ) -( ) ( )

•

Ú( ) ( ) ( ) ( ) sin ( )a a a a n a d x

Because of the properties of the Dirac delta function, equation (44) becomes equation (45):

t A K B K B K B K q x t3
1 1 1 1 1 0 1 1 12 2 45- + - -[ ] = ( ) ( )( ) ( ) ( ) ( ) sin ( )a a a a n a x

Equations (43) and (45) can be written in matrix form as equation (46) with A1 and B1 as unknowns:

- ( ) -
( )

-( ) ( ) - ( )
- ( ) ( ) - ( ) - ( )

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

( )
( )

È

Î
Í
Í

˘

˚
˙
˙

=

( ) ( )

( ) ( )

È

Î

Í
Í
Í
Í

K
K

K K

K K K K

A t

B t

p

t
t

q

t
t

0
1

1 0 1

1 1 0 1 1

1

1

3

3

1 2

2 2

a
a

a
n a a a

a a a a n a

x
x

x
x

cos

sin

˘̆

˚

˙
˙
˙
˙

( )46

Solving equation (46) for A1 and B1 yields equations (47) and (48) with D1 defined in equation (49):

A t
t

p t K K

q t K K
1 3

1

0 1 1

1 0 1

2 1

1 2
47( ) =

( ) ( ) ( ) - -( ) ( )[ ]
+ ( ) ( ) -( ) ( ) - ( )[ ]

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

a x x a a n a

x x n a a aD

cos

sin
( )

B t
t

p t K

q t K
K1 3

1

1

0
1

48( ) =

- ( ) ( ) ( )[ ]

+ ( ) ( ) ( ) -
( )È

Î
Í
Í

˘

˚
˙
˙

Ï

Ì
ÔÔ

Ó
Ô
Ô

¸

˝
ÔÔ

˛
Ô
Ô

a
x x a

x x a
a

a
D

cos

sin
( )

D1
2

0
2 2

1 1
2

2 1 49= - ( ) + + -( )[ ] ( )a a a n aK K ( )

Equations (17), (19), and (24) to (29) are substituted into equations (32), (33), and (36) to (39),
respectively, in order to find the other unknown constants—A3, B3, C3, and D3—at the matrix-coating
(region 1 to region 3) interface and C2, and D2 at the fiber-coating (region 2 to region 3) interface. Using
equation (17) in equation (32) results in the matrix form in equation (50):

2

1

1 2

1

2 1

3

3 0 1

3 3 0 1

3 0 1

3 3 0 1

0p

a
a

a

n a a a

a
a

a

n a a a

t

A K K

B K K

C I I

D I I

- -
È

Î
Í

˘
˚̇

+ - -[ ]

+ - +
È

Î
Í

˘
˚̇

+ - -[ ]

Ï

Ì

Ô
Ô
Ô

Ó

Ô
Ô
Ô

¸

˝

Ô
Ô
Ô

˛

Ô
Ô
Ô

•

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

ÚÚ = ( ) -( )cos( ) ( )xt dt p x xd x 50
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Applying an inverse Fourier cosine transformation to equation (50) yields equation (51):

t
A K K B K K

C I I D I I
p x x3

3 0 1 3 3 0 1

3 0 1 3 3 0 1

1
1 2

1
2 1

- -
È

Î
Í

˘
˚̇

+ - -[ ]

+ - +
È

Î
Í

˘
˚̇

+ - -[ ]

Ï

Ì

ÔÔ

Ó
Ô
Ô

¸

˝
ÔÔ

˛
Ô
Ô

= ( ) -

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

a
a

a n a a a

a
a

a n a a a

d xx( ) ( )
•

Ú cos ( )xt dx
0

51

Using the properties of the Dirac delta function changes equation (51) into equation (52):

t
A K K B K K

C I I D I I
p t3

3 0 1 3 3 0 1

3 0 1 3 3 0 1

1
1 2

1
2 1

- -
È

Î
Í

˘
˚̇

+ - -[ ]

+ - +
È

Î
Í

˘
˚̇

+ - -[ ]

Ï

Ì

ÔÔ

Ó
Ô
Ô

¸

˝
ÔÔ

˛
Ô
Ô

= ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
cos

a
a

a n a a a

a
a

a n a a a

x x(( ) ( )52

Using equation (19) in equation (33) gives equation (53):

2 2 2

2 1

533

3 1

3 1 0 3 1

3 1

3 3 1 0

0p

a

a a a n a

a

n a a a

d xt

A K

B K K K
C I

D I I

xt dt q x x

-

+ - -[ ]
+

+ - +[ ]

Ï

Ì

Ô
Ô

Ó

Ô
Ô

¸

˝
Ô
Ô

˛
Ô
Ô

= ( ) -( )
•

Ú

( )

( ) ( ) ( )
( )

( ) ( ) ( )

sin( ) ( )

Applying an inverse Fourier sine transformation to equation (53) yields equation (54):

t
A K B K K K

C I D I I
q x x xt dx3 3 1 3 1 0 3 1

3 1 3 3 1 0
0

2 2

2 1
54

- + - -[ ]
+ + - +[ ]

Ï
Ì
Ó

¸
˝
˛

= ( ) -( ) ( )
•

Ú
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
sin ( )

a a a a n a

a n a a a
d x

Because of the properties of the Dirac delta function, equation (54) becomes equation (55):

t
A K B K K K

C I D I I
q t3 3 1 3 1 0 3 1

3 1 3 3 1 0

2 2

2 1
55

- + - -[ ]
+ + - +[ ]

Ï
Ì
Ó

¸
˝
˛

= ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
sin ( )

a a a a n a

a n a a a
x x

Using equations (24) and (25) in equation (36) gives equation (56):

A K K B K K C I I

D I I C I I

3 0 1 3 3 0 1 3 0 1

3 3 0 1 2 0 1

1
1 2

1

2 1
1

- -
È

Î
Í

˘

˚
˙ + - -[ ] + - +

È

Î
Í

˘

˚
˙

+ - -[ ] = - +
È

Î
Í

˘
˚̇

+

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

g
g

g n g g g g
g

g

n g a g g
a

g DD I I2 3 0 12 1 56( ) ( ) ( ) ( )n g g g- -[ ]

Using equations (26) and (27) in equation (37) yields equation (57):

- + - -[ ] +

+ - +[ ] = + - +[ ]
A K B K K K C I

D I I C I D I I

3 1 3 1 0 3 1 3 1

3 3 1 0 2 1 2 2 1 0

2 2

2 1 2 1 57

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

g g g g n g g

n g a g g n g g g
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Using equations (28) and (29) in equation (38) yields equation (58):

- - + + = +A K B K C I D I C I D I3 1 0 3 1 3 0 2 1 2 03
58( ) ( ) ( ) ( ) ( ) ( ) ( )g g g g g g g g g

Using equations (30) and (31) in equation (39) yields equation (59):

A K B K K C I

D I I C I D I I

3 0 3 1 3 0 3 0

3 1 3 0 2 0 2 1 2 0

4 1

4 1 4 1 59

( ) ( ) ( ) ( )

( )

g g g n g g

g g n g g g g n g

+ - -[ ] + ( )
+ ( ) + -( ) ( )[ ] = ( ) + ( ) + -( ) ( )[ ]

From equations (56), (57), (58), and (59), the matrix system in equation (60) is established, with R1,
R2, R3, and R4 detailed in equations (61) to (64):

-

-

-

-

-

+

-

-

- -

( )

( )

Ê

Ë

Á
ÁÁ

ˆ

¯

˜
˜̃

( ) ( )
( )

Ê

Ë
Á

ˆ

¯
˜

( )

( )

Ê

Ë

Á
ÁÁ

ˆ

¯

˜
˜̃

( ) ( )
( )

Ê

Ë
Á

ˆ

¯
˜

( )
( )

( )

K

K

K

K

I

I

I

I

K

K

K

0

1

3 0

1

0

1

3 0

1

1

1

0

1
1 2

1
2 1

2

g

g
g

g

g

g

g
g

g

g

g

g

g

n

g

n

g

g

--

+

-

- -

- -

( )

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

( )
( )

( )
( )

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

( ) ( ) ( ) ( )

( )
( )

( ) ( )
Ê

Ë
Á

ˆ

¯
˜ ( )

2

2

2

4 1

3 1

1

1

0

3 1

1 0 1 0

0
1

3 0
0

n

g

n

g g

g

n

g

g

g

g

g

g

g g g g

g
g

g
g

K

I

I

I

I

K K I I

K
K

K
I

II

I

A t

B t

C t

D t

R

R

R

R1

3 0

3

3

3

3

4 1

1

2

3

4g

gn

( )
( ) ( )

Ê

Ë
Á

ˆ

¯
˜

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

( )

( )

( )

( )

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

È

Î

Í

+ -

=

ÍÍ
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

( )60

where

R C I I D I I1
1

2 1 612 0 1 2 3 0 1= - +
È

Î
Í

˘
˚̇

+ - -[ ]( ) ( ) ( ) ( ) ( ) ( )g
a

g n g g g

R C I D I I2 2 1 622 1 2 2 1 0= + - +[ ]( ) ( ) ( ) ( ) ( )g n g g g

R C I D I3 632 1 2 0= +( ) ( ) ( )g g g

R C I D I I4 4 1 642 0 2 1 2 0= ( ) + ( ) + -( ) ( )[ ]g g g n g ( )

The solution of equation (60) yields equations (65) to (68) for the unknown constants A3, B3, C3, and
D3 in terms of C2 and D2:

A t
D I I

3

2
2

2 3 0
2

1
2

31
65( ) =

-( ) ( ) - ( )( )
- +

g n n g g

n
( )
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B t3 0 66( ) = ( )

C t C
D I K I K

3 2
2

2
2 3 0 0 1 1

31
67( ) = -

-( ) ( ) ( ) + ( ) ( )[ ]
- +

g n n g g g g

n
( )

D t
D

3
2 2

3

1

1
68( ) =

- +( )
- +

n

n
( )

Equations (25) and (27) are substituted into equations (32) and (33) in order to find the unknown
constants for the coating layer. The matrix system in equation (69) is established to solve for C2 and D2:

N N

N N

C t

D t

R

R

1 2

3 4

5

6
692

2

È

Î
Í

˘

˚
˙

( )
( )

È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙ ( )

Terms in equation (69) are defined in equations (70) to (75):

N I
I

1 700
1

= - ( ) +
( )

g
g

g
( )

N

I I

I I K K

I I I K I

2
1

1

1 1 2

1
3

2 3 0 1

2
2 3 0

2
1

2
0 1

2
2 3 0 1 0 0

=
- +

- +( ) - +( ) ( ) - ( )[ ]

-
- -( ) ( ) - ( )[ ] ( ) + ( )[ ]

+ -( ) ( ) - ( )[ ] ( ) ( ) +

n

n n a a a

g n n g g a a a

a

a
g n n a a a g g 11 1

71

g g( ) ( )[ ]{ }

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜K

( )

N I3 721= ( )g ( )

N

I I

I I K

I I K I K

4
1

1

1 2 1

3

2 0 3 1

2
2 3 0

2
1

2
1

2
2 3 1 0 0 1 1

=
- +

- +( ) ( ) - - +( ) ( )[ ]
+ -( ) - ( ) + ( )[ ] ( )

- -( ) ( ) ( ) ( ) + ( ) ( )[ ]

Ï

Ì

Ô
Ô

Ó

Ô
Ô

¸

˝
Ô

n

n a a n a

g n n g g a

g n n a g g g g

ÔÔ

˛
Ô
Ô

( )73

R t p5 74= ( ) ( )cos ( )z z

R t q6 75= ( ) ( )sin ( )z z

The solutions of equation (69) for the unknown constants C2(t) and D2(t) are shown in equations (76)
and (77):
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C t

I I

I I K

I I K I K

2
3

2 0 3 1

2
2 3 0

2
1

2
1

2
2 3 1 0 0 1 1

1

1 2 1

( ) =
Ê

Ë
Á

ˆ

¯
˜

-

- +( ) ( ) - - +( ) ( )[ ]
+ -( ) - ( ) + ( )[ ] ( )

- -( ) + ( ) ( ) ( ) + ( ) ( )[ ]

Ï

D

a

n a a n a

n n n g g a

g n n a g g g g

ÌÌ

Ô
Ô

Ó

Ô
Ô

¸

˝
Ô
Ô

˛
Ô
Ô

( ) ( )

+

- +( ) - +( ) ( ) - ( )[ ]

-
- -( ) ( ) - ( )[ ] ( ) + ( )[ ]

+ -( ) ( ) -

p t

I I

I I K K

I I

z z

a

n n a a a

g n n g g a a a

a

a
g n n a a a

cos

1 1 2

1

2 3 0 1

2
2 3 0

2
1

2
0 1

2
2 3 0 1(( )[ ]

( ) ( )
+ ( ) ( )

È

Î
Í
Í

˘

˚
˙
˙

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

Ï

Ì

Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô

¸

˝

Ô
Ô
Ô
Ô

˛

Ô
Ô
Ô
Ô

( ) ( )

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜

I K

I K

q t

0 0

1 1

76

g g

g g

z zsin

( )

D t I t p
I I q t

2
3

1
0 1

3

1
1 77( ) = ( ) ( ) ( ) -

- ( ) + ( )[ ] ( ) ( )Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
- - +( )[ ]

Ê

Ë
Á
Á

ˆ

¯
˜
˜D

a z z
a a a z z

a
a ncos

sin
( )

Since A1(t), B1(t), A3(t), B3(t), C3(t), D3(t), C2(t), and D2(t) are known, the Green’s functions in equations
(10) to (12)—F1(t), F2(t), and F3(t)—are also known.

Displacement Equations

In this investigation, the stability of the interface crack at the matrix-coating interface is examined by
calculating the SERR at the leading edge of the crack. The fiber-coating interface is considered to be
bonded. Substituting Green’s functions for the matrix F1(t) and coating F3(t) layers into displacement
equations (20) to (23) yields equations (78) to (81). The variables A1 and B1 are known from equations
(38) and (39); C2(t) and D2(t) are known from equations (76) and (77); and A3(t), B3(t), C3(t), and D3(t) are
known from equations (65) to (69).

u r x
dF

dr
t xt dt

t A t K B t K xt dt

t

t

p t K K

q

r1 1
1

1

0

1

2
1 1 1 0

0

1

2

3
1

0 1 1

1

1

1

2 1

, cos

cos

cos

sin

( ) = - ( )

= - - ( ) ( ) - ( ) ( )[ ] ( )

= -

-
( ) ( ) ( ) - -( ) ( )[ ]

+ ( )

•

•

Ú

Ú

pm

pm
r r r

pm

a x x a a n a

x xD tt K K
K

t

p t K

q t K
K

( ) -( ) ( ) - ( )[ ]

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

Ê

Ë

Á
Á

ˆ

¯

˜
˜

( )

-

- ( ) ( ) ( )[ ]

+ ( ) ( ) ( ) -
( )È

Î
Í
Í

˘

˚
˙
˙

Ï

Ì
ÔÔ

Ó
Ô
Ô

¸

˝
ÔÔ

˛
Ô
Ô

Ê

Ë

1 2 1 0 1

1

3
1

1

0
1

n a a a
r

a
x x a

x x a
a

a
D

cos

sin

ÁÁ
Á
Á

ˆ

¯

˜
˜
˜

( )

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

( )
•

Ú
r rK

xt dt

0

0

78

cos

( )
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u r x

d

dr r

d

dr
F xt dt

t
d F

d

dF

d
F xt dt

t

x1 1

1
1

2
2

20
1

1

2
1

2
1

2 1
1

1 1
0

1

2

1
1 2

1

1
2 1 2 1

1
2 1

1

2 1

,

sin

sin

( )

= -( )— + +
È

Î
Í

˘

˚
˙ ( )

= -( ) + -( ) + -( )
È

Î
Í

˘

˚
˙ ( )

=

-

•

•

Ú

Ú

pm
n

pm
n

r
n

r r
n

pm

n11 1 0 1 0
1

1 1 1

1 1 1 1 0

1 1 0 1

2 1
1

2 1

( ) ( ) ( ) - ( ) ( ) +
( ) ( ) + ( ) ( )

È

Î
Í
Í

˘

˚
˙
˙

+ -( ) - ( ) ( ) - ( ) ( )[ ]

+ -( ) ( ) ( ) + ( )

A t K B t K
A t

K B t K

A t K B t K

A t K B t

r r
r

r r r

n
r

r r r

n r rKK

xt dt

1

0

r( )[ ]

Ï

Ì

Ô
Ô
ÔÔ

Ó

Ô
Ô
Ô
Ô

¸

˝

Ô
Ô
ÔÔ

˛

Ô
Ô
Ô
Ô

( )
•

Ú sin

=

-( )

( ) ( ) ( ) - -( ) ( )[ ]
+ ( ) ( ) -( ) ( ) - ( )[ ]

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
( ) +

( )È

Î
Í
Í

˘

˚
˙
˙

+

-

1

2 1

2 1

1 2

1

2

1

3
1

0 1 1

1 0 1

0
1

3
1

pm

n

a x x a a n a

x x n a a a
r

r

r

a

t

t
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Using the same methods, a solution with a similar form can be obtained for antisymmetric loading
conditions. The solutions for symmetric and antisymmetric loading conditions can be rewritten as
equations (82) to (85), where J t r11

1 ,( ), J t r12
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D1, and D3 are defined in equations (86) to (95):
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Integral Equations

The stress-related boundary conditions at the matrix-coating interface are given by equations (96)
and (97):

s sr c r cr x r x p x x L L1 3 96, ( , ) ( )( ) = = ( ) Œ + ¢( )

t trx c rx cr x r x q x x L L1 3 97, , ( )( ) = ( ) = ( ) Œ + ¢( )

where L is the length of the bonded surface and L¢ is the length of the crack surface. The functions p(x)
and q(x) are zero on the crack surface and unknown on the bonded surface. The displacement-related
boundary conditions at the matrix-coating (region 1 to region 3) interface are given by equations (98)
and (99):

u r x u r x g x x Lr c r c1 3 1 98, , ( )( ) - ( ) = ( ) Œ
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u r x u r x g x x Lx c x c1 3 2 99, , ( )( ) - ( ) = ( ) Œ

For the symmetric case,
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For the antisymmetric case,
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The problem is solved if p(x) and q(x) on L are determined. In order to find these functions along the
bonded surface L, the integral equations are obtained by substituting equations (81) to (84) into equations
(99) to (100). For the symmetric loading condition, the integral equations (99) and (100) become
equations (102) and (103):
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For the antisymmetric loading condition, the integral equations (99) and (100) become equations
(104) and (105):
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For the combined symmetric and antisymmetric loading condition, the integral equations are given by
equations (106) and (107):
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The upper and lower kernels correspond to symmetric and antisymmetric cases, respectively.
Considering the symmetry properties of the functions p(x), q(x), g1(x), and g2(x)—which are given by
equations (100) and (101)—and using trigonometric identities enables the integral to be rewritten as
equations (108) and (109):
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Equations (108) and (109) become equations (110) and (111) with the terms defined in equation
(112):
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Since the inner integral for t cannot be integrated using usual integration methods, an asymptotic
approach is applied. When the asymptotic expansions of Hij(t, r) are considered as t Æ 0, some of the
kernels will diverge. For divergent kernels to be avoided, the 1/t factor must be removed. For this reason,
equations (110) and (111) are differentiated with respect to x. Using the identities in equations (113) and
(114) changes equations (111) and (112) into equations (115) and (116):
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Integration of equations (115) and (116) using an asymptotic approach gives equations (117) and
(118) and the terms in equation (119):
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Singular Integral Equations and Fredholm Kernels

In the problem considered here, the bonding stresses p and q are unknown, and g1 and g2 are the
known displacement differences. Therefore, the displacement-related equations (98) and (99) are used to
find p and q. From these two boundary conditions, two integral equations are constructed to find the two
unknowns. In equations (117) and (118), sine and cosine terms are the steady-state oscillating functions.
Therefore, Hij(t, r) determines the behavior of the integrals for these equations. For the integrals in
equations (117) and (118) to be calculated for a given interval, the integrand must be integrable over the
corresponding domain. If the constant terms at infinity in Hij(t, r) are subtracted from Hij(t, r), the
functions Hij(t, r) – H•

ij(t, r) become integrable. After the asymptotic values are subtracted and added, the
integral equations become SIEs with two parts. The dominant parts contain the singularities, and the
regular parts are the Fredholm kernels. After the asymptotic part is subtracted, the kernels can be
integrated numerically. But this subtracted quantity has to be added back to the whole equation. That is
where the dominant part of the SIE comes from. If the limit is taken as e Æ 0 and r Æ rc in the integral
equations, the Fredholm kernels and the SIEs in equations (117) and (118) become equations (120) and
(121):
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Verification of the Singular Integral Equation

For verification of the analytical result, the SIEs for the three-concentric-cylinder model can be easily
reduced to the model with two concentric cylinders developed by Ozbek and Erdogan (ref. 5). Making the
material properties of the coating equal to the material properties of the fiber (i.e., m3 = m2, n3 = n2, and
E2 = E3) in equations (120) and (121) yields exactly the same SIEs as in equation 14 of reference 5, as
shown in equations (130) and (131):
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where the kernels *
2g  are reduced to the one in reference 5 as shown in the following equation:
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Therefore, the validity of the left side of the SIEs (eqs. (120) and (121)) are established. Reducing the
right side of the SIEs (eqs. (120) and (121)) to the case of the two-cylinder model (as in eq. (16) of ref. 5)
yields equations (139) and (140):
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The validity of the left and right sides of the SIE is thus established.
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Numerical Solution

Fundamental Function of the Singular Integral Equation

The system of SIEs is derived for three concentric cylinders with two annular interface cracks. In both
SIEs (eqs. (120) and (121)), the bonding stresses p and q are unknown and g1 and g2 are the known
displacement differences. For the problem at hand, the SIEs have a simple Cauchy kernel and lengthy
Fredholm kernels, and it is most convenient to use a numerical method to obtain the solution. Numerical
solution methods for SIEs have been studied quite extensively (see refs. 8 to 12). There are two methods
that have been commonly used to solve the integral equations with Cauchy-type singularities. These are
the quadrature method and the series expansion method. In this study, the series expansion method is
adopted (see refs. 9, 12, and 13).

Normalization of the interval of the integrals in the SIEs (eqs. (120) and (121)) yields equations (141)
and (142):

- -
-

- +[ ] =
- -Ú Úg

p

x

x
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p
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( )
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1 1
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p
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s
d k s p k s q d Q s-

-
+ +[ ] =

- -Ú Ú
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142
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21 22
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The system of SIEs in equations (141) and (142) can be written as one complex equation. Multiplying
equation (141) by –i and adding the result to the second equation (142) yields the single SIE in equation
(143), with the terms defined in equations (144), (145), (146), and (147):

g f
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f x

x
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p
x f x x f x x* ( )
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+ +[ ] =
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f f x x x f x x x1 1 2 144s p s iq s p iq p iq( ) = ( ) + ( ) ( ) = ( ) + ( ) ( ) = ( ) - ( ) ( )

Q s Q s iQ s( ) = ( ) + ( )2 1 145( )

ˆ , , , , , ( )K s k s k s i k s k s1 21 12 22 11
1
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146x x x x x( ) = ( ) + ( )[ ] + ( ) + ( )[ ]

ˆ , , , , , ( )K s k s k s i k s k s2 21 12 22 11
1
2

147x x x x x( ) = ( ) - ( )[ ] - ( ) - ( )[ ]

The kernels K̂1 and K̂2  are bounded and f x x, ˆ , , ˆ , ,K s K s Q s1 2( ) ( ) ( ) are complex functions. The

singular behavior of the function f(x) at ±1 is determined by the dominant part of the SIE. The function

f(x) satisfies a Holder condition on every closed subinterval of (–1, 1). Its behavior near the ends can be
represented by equation (148):

f s w s f s s( ) = ( ) ( ) < 1 148( )

The function f is Holder-continuous on any closed subinterval of (–1, 1). This means that p(s) and q(s)
are continuous on the open interval –1 < s < 1 and that f(x) has integrable singularities at s ± 1. The
Fredholm kernels are also Holder-continuous with respect to both variables along the integration interval.
The dominant part of the SIE is considered to be equal to zero so that the fundamental function can be
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found. The fundamental function w(s) is obtained from the homogeneous dominant part given by
equation (149):

-
( )
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+ ( ) =
-Ú

1
0 149

1

1

p x
x g

i

w s

s
d w s* ( )

The fundamental function w(s) in equation (149) can be expressed as in equation (150) (ref. 13):

w s s s( ) = -( ) +( )1 1 150l b ( )

where l and b are defined in equations (151) and (152):

l w= - -
1
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1
2
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The term w  in equations (151) and (152) is defined in equation (153):
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The boundaries for the real part of l and b in equations (151) and (152) are defined in equation (154):
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1 0

1 0 154
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In equation (150), w(s) is the weight function that depends on the index of the singularities. The index
of the singularity k for a given problem is defined in equation (155):
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k
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Solution by Jacobi Polynomials

After the fundamental function w(s) of the SIE is obtained, the solution of equation (143) becomes
equation (156):

f
l bs c w s P sn n( ) = ( ) ( )( )

•

Â ˆ ( ),

0

156
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In equation (156), nĉ  are defined as undetermined constants that need to be calculated with

n = 0, 1, …. The term P sn
l b,( ) ( )  is the Jacobi polynomial. The fundamental function w(s) of the SIE in

equation (156) is the weight function of the Jacobi polynomials. The details of the procedure considered
here are studied extensively in references 9, 12, 13, and 14.

Substituting equation (156) into equation (143) yields equation (157) (ref. 9):

1 2 1
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1 1
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The SIE (157) becomes equation (158). The terms in equation (158) are defined in equations (159),
(160), and (161):
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where (x) is the conjugate of w Pnx x
a b( ) ( )( ), .

In equation (158), ĉ  is the conjugate of ĉ . So that the functional equation (158) can be reduced to an
infinite system of algebraic equations with the unknown coefficients cn, both sides of the equation are
multiplied by w s P sm- -( ) ( )- -l b l b, , ( , )  with (m = 0, 1, 2, …) and are integrated over (–1, 1). The
orthogonality relation of the Jacobi polynomials in equation (162) is also used:
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Since the index of the singularity is k = 1 for m = 0, the right side of equation (162) becomes equation
(163), with the Jacobi polynomial defined in equation (164):

q
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Truncating the series of equation (158) for the first N terms yields equation (165):
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Terms in equation (165) are defined in equations (166) to (172):
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The matrix form of equation (165) is written in equation (173):
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where
ĈR real part of ĉ
ĈI imaginary part of ĉ
TR real part of the right side
TI imaginary part of the right side

The number of equations in equation (173) is 2(N + 1). There are 2(N + 2) unknown constants: ĈR0 ,

ĈR1 , ĈRN +1  and ĈI0 , ĈI1, and ĈIN +1. Therefore, the continuity condition is the additional equation used
to provide the unique solution given in equation (174):

f s ds( ) =
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Ú 0 174
1

1

( )
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Substituting equation (156) into equation (174) and using the orthogonality conditions in equation (162)
yields equation (175):

ˆ ˆ , ( )CR iCI+( ) ( ) =q l b0 0 175

Adding an additional equation (eq. (175)) into equation (173) yields equation (176):
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Any standard method of solution of the system of algebraic equations can be used to determine the
unknown ĉ  in terms of ĈR  and ĈI , as in equation (177):
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From equation (177), the unknown constants ĈR0 , ĈR1 , …, ĈRN +1  and ĈI0 , ĈI1, …, ĈIN +1, are known.
These constants determine ĉ0 , ĉ1, …, ĉN +1, which are defined in equation (178):

ˆ ˆ ˆ

ˆ ˆ ˆ

.

.

.

ˆ ˆ ˆ ( )

c Cr iCI

c Cr iCI

c CR iCIN N N

0 0 0

1 1 1

1 1 1 178

= +

= +

= ++ + +

Gauss-Jacobi Quadrature Technique

The objective of the numerical work in this technique involves the evaluation of the unknown
constants. However, since the related integrals are of the Gauss-Jacobi type, these constants may be
evaluated accurately without computational difficulty (ref. 9). The quadrate formula, which can be used
for this purpose, is defined in equation (179) (ref. 15).
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where sk and m = 1, …, N are the roots of the orthogonal polynomial P sN k
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weights of equation (179) are defined in equation (180):
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where xn, n = 1, …, N, are the roots of PN n
a b

x
,( ) ( ) = 0. The weights of equation (181) are defined in

equation (182):
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Stress Intensity Factor

In the immediate neighborhood of the crack tips, the form of the solution is identical to that of the
plane strain, and the bonding stresses may be expressed as in equation (183) (ref. 5):
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where the bounded functions ¬1 and ¬2 are the intensities of stresses and are proportional to the external
loads.

Also from the formulation of the problem, the equation f(x) = p(x) + iq(x) can be written as in
equation (184):

f l bx c w x P xi N
i

N

( ) = ( ) ( )
=

Â ˆ ( )( , )

1

184

In equation (184), the fundamental function w(x) is defined in equation (185):
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The term in equation (185) is defined in equation (186):
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Therefore, equation (186) becomes equation (187):
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Equation (187) can be written in different forms, as defined in equations (188) to (190):
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This last form of the fundamental function (eq. (190)) is multiplied by i/i and uses 1/i = –i. The
fundamental function in equation (190) is rewritten in equation (191):
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Substituting equations (184) and (191) into equation (183) yields equation (192):
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After necessary simplifications are made, equation (192) becomes equation (193):
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It can be shown that (ref. 16), in terms of f(x), the bonding stresses in the neighborhood of the crack
tip may be expressed as in equation (194):
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Thus, the stress intensity (ref. 5) is defined as

s t
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ˆ ˆ sin cos
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195

where –1 < x < 1. Since the left side of equations (194) and (195) are the same, the right side of equations
(194) and (195) are equal to each other. Therefore, the SIFs are obtained as in equation (196):
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Strain Energy Release Rate

The SERRs for modes I and II for a crack along the interface may be expressed as in reference 5:
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The total SERR is then obtained as
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Application of the Method

As an illustration of the use of the numerical approach developed in this report, the sensitivity of the
SERR and SIF to coating stiffness and thickness are examined using material properties representative of
polymer matrix composites. The method is applied to the case of a single fiber embedded in an infinite
matrix with a radial load applied to the matrix. In the SIE, Q1 and Q2 are functions of closed displacement
differences that are related to the applied load at infinity:
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The displacement differences that are assumed to be known are associated with an elasticity solution.
So that the solutions can be found, two different cylinders must be formed. The first is a hollow outer
cylinder that represents the matrix. This cylinder has an infinite outer radius. Since the fiber and coating
are considered to be perfectly bonded, the second cylinder is a solid cylinder formed by combining the
inner solid cylinder (fiber) with the middle hollow cylinder (coating). There is no bond between the two
cylinders, and external loads are applied separately to the two cylinders.

In the example that is considered here, the external radial stress sr1(•, x) = s0 = 1 lb/in.2 is applied to
the outer (matrix) cylinder. Index r is for the radial direction, and index 1 is for the matrix. There is no
load applied to the second cylinder. Then, from the elasticity solution of the problem, the surface
displacements for the first cylinder (matrix) and the second cylinder (coating and fiber) are
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The displacement differences that need to be closed at the matrix-coating (region 1 to region 3)
interface can be written as
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where r = rc and x Œ L. Therefore, rewriting equations in equation (201) yields
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As an example, symmetric loading and a single bond are considered where L = (–1, 1) and L¢ is
infinitely long. For the SIE, a zero stress state at infinity is solved; Q1 and Q2 are the only loadings that
are considered. In the SIE, g1(x) and g2(x) are expressed as
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Equations (202) and (203) are used to find b1 and b2 as in equation (204):
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Substituting equations (203) and (204) into equation (199) yields equation (205):
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The effects of material properties and crack size on the SERR are now considered. In the SIE, the
integrals from –1 to 1 that contain Jacobi polynomials are taken by using the Gauss-Jacobi quadrature
technique. Providing an adequate number of points is important for convergence. As shown in figure 5,
convergence begins at about 16 points. The material properties used here are the same as those used in
reference 5. The material properties of the matrix (indicated by a subscript 1) are E1 = 4.5¥105 lb/in.2 and

n1 = 0.35, and the properties of the fiber (indicated by a subscript 2) are E2 = 107 lb/in.2 and n2 = 0.2.

Figure 5.—Number of Gauss-Jacobi quadrature points. 

Number of Gauss-Jacobi quadrature points, N
4 8 12 16 20 24

0.3088

0.3084

0.3080

0.3076

S
tr

ai
n 

en
er

g
y 

re
le

as
e 

ra
te

, S
E

R
R



NASA/TM—2004-212328 36

The radius of the coating is 1, and the radius of the fiber is 0.5. In this example, the value of n3 = 0.2 is
not changed, but E3 ranges from E1 to E2 and from E2 to E = 108 lb/in.2 The parametric studies are
presented for the normalized mode-I and mode-II SIF: that is, equation (206) with c = L/2, and a
normalized SERR; in other words, equation (209), which is derived from equations (207) and (208):
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In figure 6, the SERR and SIF are plotted versus coating stiffness E3 with a lower bound equal to the
matrix stiffness E1 and an upper bound equal to the fiber stiffness E2: that is, E1 = 4.5¥105 £ E3 £ E2 = 107.
The SERR and SIF are sensitive to variations in coating stiffness when the coating stiffness is close to the
matrix stiffness. As the coating stiffness increases, the SERR increases and becomes less sensitive to
variations in coating thickness. Figure 7 is similar to figure 6 except that the maximum coating stiffness
(108) is 10 times the fiber stiffness. The SERR and SIF are nearly independent of coating stiffness when
the coating stiffness exceeds the fiber stiffness. For polymer matrix composites, these results suggest that
the driving force for crack growth will be sensitive to the stiffness of the interphase and that the driving
force will increase significantly as the stiffness of the interphase increases beyond the stiffness of the
matrix. For the hypothetical case in which interphase stiffness changes but the critical SERR for crack
propagation remains constant, an increase in the stiffness of the interphase would result in crack
propagation at a lower applied load.

The effect of coating thickness on the SERR and SIF is shown in figure 8. The material properties
used to obtain the data in figure 8 are E1 = 4.5¥105 lb/in.2, n1 = 0.35 for the matrix; E2 = 107 lb/in.2, n2 =

0.2 for the fiber; and E3 = 108 lb/in.2, n3 = 0.2 for the coating. The ratio of the coating thickness to half of
the bonded length (h3/c) is varied from 0.05 to 2. The normalized SERR and SIF versus the ratio h3/c is
shown in figure 8. Since the SERR increases with increasing coating thickness, coating thickness could
result in crack propagation at a lower applied load. This conclusion is valid only if the critical SERR is
not affected by the coating thickness. In addition, this conclusion applies only for the material properties
assumed in the analysis. In this analysis, the coating stiffness was greater than the fiber stiffness. A
different analysis would be needed to evaluate the effect of interphase thickness in a material system in
which the interphase stiffness is closer to the matrix stiffness.
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Figure 6.—Stress intensity factors (SIFs) and strain energy release rate
   (SERR) versus E3�105 ranging from E1 = 4.5�105 to E2 = 107 where
   c is half the bounded length (c = L/2).
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Figure 7.—Stress intensity factors (SIFs) and strain energy release rate
    (SERR) versus E3�105 ranging from E1 = 8�106 to E2 = 108.
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Figure 8.—Stress intensity factors (SIFs) and strain energy
   release rate (SERR) versus h3/c for h2 = 0.2.
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Conclusions

An analytical model was developed to calculate the SIF and SERR for an infinitely long straight fiber
and an infinite matrix that were partly joined using a third material called the interphase (or coating). The
addition of a third (interphase) region is an extension of a two-component model previously described in
reference 5. The ability to evaluate the effect of interphase geometry and material properties makes the
model more realistic for polymer matrix composites, which are known to have an interphase region. A
preliminary set of parametric studies demonstrated the effect of interphase properties on the SERR. An
advantage of this analytical method is that calculation of the SERR and SIF is straightforward for
problems with cylindrical symmetry. Although cylindrical symmetry does not necessarily apply in a real
composite structure, the method is still useful as a simple tool to provide insight about the effect of
interphase properties on the crack driving force. The model can also be applied to other material systems
such as ceramic or metal matrix composites by using the appropriate material properties. Further
development of the method to account for different loading conditions and different crack types would
make the method even more useful, particularly for experiments such as fiber pullout or growth of a
debond area in a single fiber test where the SIF and SERR solutions are still lacking.
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Appendix—Symbols

A1, B1, C1, D1 unknown constants for layer 1 (matrix)
A2, B2, C2, D2 unknown constants for layer 2 (fiber)
A3, B3, C3, D3 unknown constants for layer 3 (coating)
C half of the bounded length
E1, E2, E3 modulus of elasticity for the matrix, fiber, and coating
F Love strain function or Green’s function
F1, F2, F3 Green’s functions for the matrix, fiber, and coating, respectively
g1, g2 known displacement gaps along the 1 and 2 directions
G1(a), G1(b), G2(a), G2(b) strain energy release rates (SERRs)
I0, I1, K0, K1 modified Bessel functions of order 0 and 1, respectively
k kI II

* *, normalized stress intensity factors for modes I and II
ˆ , ˆ , ˆ , ˆk a k b k a k b1 1 2 2( ) ( ) ( ) ( ) stress intensity factors (SIFs)

L length of the bonded interface
L¢ length of the debonded interface

P sN k
- -( ) ( )l b, Jacobi polynomial

p, q unknown stresses outside the crack, on the bonded interface
Q1, Q2 functions of closed displacement differences along the radial and axial

directions
Re real part of a complex number
¬1, ¬2 stress intensities

r radial distance
rc coating radius
rf fiber radius
rm matrix radius
s dummy variable
t dummy variable of the Fourier domain
ur, ux displacements along the r and x directions, respectively
w(x) fundamental function
x axial distance
a rct, where r1 = r2 = rc

G gamma function

g rft, where r2 = r3 = rf

g* material parameter

d Dirac delta function

q cylindrical coordinate

k index of the singularity

(m1, n1 ), (m 2, n2 ), (m 3, n3 ) elastic constants of the matrix, fiber, and coating, respectively

n Poisson's ratio

x dummy variable

r variable (a function of rt)

sr, s q, s x stresses along the r-, q-, and x-axis, respectively

trx shear stresses along the r-x direction
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f complex form of the unknown stresses outside the crack, on the bounded
interface

—2 Laplacian operator in cylindrical coordinates

Subscripts:
1 or m related to the matrix
2 or f related to the fiber
3 or c related to the coating
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A boundary-value problem governing a three-phase concentric-cylinder model was analytically modeled to analyze
annular interfacial crack problems with Love’s strain functions in order to find the stress intensity factors (SIFs) and
strain energy release rates (SERRs) at the tips of an interface crack in a nonhomogeneous medium. The complex form of
a singular integral equation (SIE) of the second kind was formulated using Bessel’s functions in the Fourier domain,  and
the SIF and total SERR were calculated using Jacoby polynomials. For the validity of the SIF equations to be established,
the SIE of the three-concentric-cylinder model was reduced to the SIE for a two-concentric-cylinder model, and the
results were compared with the previous results of Erdogan. A preliminary set of parametric studies was carried out to
show the effect of interphase properties on the SERR. The method presented here provides insight about the effect of
interphase properties on the crack driving force.


